
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 385
Volume 1, Issue 4, December 2010

In Search of a Suitable Indian Language for

Huffman Data Compression Algorithm

Satyendra Nath Mandal1, Md. Iqbal Quraishi2
, Kuntal Bhowmick3 and J. Pal Chaudhuri4

1
Lecturer, Dept. of IT, Kalyani Government Engineering College, West Bengal, India.

2
Lecturer, Dept. of IT, Kalyani Government Engineering College, West Bengal, India.

3
4th Year, Dept. of CSE, Kalyani Government Engineering College, West Bengal, India.

4
Asst. Professor, Dept. of IT, Kalyani Government Engineering College, West Bengal, India.

Kalyani Govt. Government Engineering College, Kalyani, Nadia, 741235, West Bengal, India

{satyen_kgec@rediffmail.com, iqbalqu@gmail.com, kuntal.kgec.cse@gmail.com jnpc193@yahoo.com}

Abstract: Huffman data compression algorithm is used many data

compression application. In this paper, this algorithm has been used

on data files of same size made by different languages. The same

efforts have been made on different size files. The languages have

been taking from the different part of India. A comparison has been

made based on compression ratio, compression time and

decompression time. Finally, one language has been selected based

on performance.

Keywords: Huffman Data Compression Algorithm, Lossless data

Compression, Compression Ratio, Compression Time and

Decompression Time.

1. Introduction

In last decade has witnessed tremendous growth in the

Information Technology innovations and applications.

Information Technology has become a vital component for

the success of business because most of the organizations

require fast information dissemination, information

processing, storage and retrieval of data. The growth in this

area occurred at such a fast rate due to the fact that

Information Technology [1][2] opened new vistas in almost

all day-to-day problems related with common man.

Information Technology has revolutionized our life and has

made a significant impact on all dimensions of our day-to-

day life. In banking sector, use of credit, debit card, ATM,

Tele-banking, Net banking[6]; in transportation, reservation

of air tickets[5], railway tickets, buying & selling items on

internet, electronic market, inquiry of department, bank

transaction on net, entertainment, education, communication,

hotel reservation[3], tourism have become reality. Internet is

one of the mediums, which being used to access the pool of

information.

Proper transformation of data is main theme in this era.

Sometimes information becomes so large that it becomes

problematic to transmit or storing information in their proper

format. So, the concepts of data compression arise. That

means, transformation of information in certain format

which will take much small space comparing to original

data. Shannon-Fanon algorithm [7], Huffman algorithm [4]

& Arithmetic Coding [8] are some process of data

compression. The works include “Optimal Huffman Tree-

Height Reduction for Instruction Level Parallelism”, Dept.

of Computer Sciences, the University of Texas at Austin

reports on a work of exploiting instruction level

parallelism(ILP) is a key component of high performance for

modern processor. For this purpose, Huffman Algorithm was

taken to (1) tree height reduction rewriting expression trees

of commutative and associative operations to make the

height of the tree reduced (2) software fan-out generating

software to fan out tree even when expression store

intermediates of the instruction. [8]

Another work on the concurrent update and generation of the

dynamic Huffman Code on is made for the dynamic

Huffman Encoding. The concurrent procedure performs the

tree update and code generation processes in parallel and

therefore reduces over 45% number of steps required by the

Knuth‟s work [13].Work on the Fast Adaptive Huffman

Encoding Algorithms state that Huffman code suffers from

two problems: the prior knowledge of the probability

distribution of the data source to be encoded is necessary,

and the encoded data propagate errors. The first problem can

be solved by an adaptive coding, while the second problem

can be party solved by segmenting data into segments. But

the adaptive Huffman code performs badly when segmenting

data into relatively small segments because of its relatively

slow adaptability [7]

The paper on “Optimal Multiple Bit-Huffman Decoding”

proposes a new optimal multi-bit Huffman decoding method

that combines the barrel shifter and look-ahead approaches.

Specifically, the work is on the development of approval

partition of the state diagram corresponding Huffman

diagram [14].The development of an efficient compression

scheme to process the Unicode format data represents a very

difficult task. Our work mainly concentrates on this.

In this paper, the design of an efficient scheme of

compression using the Huffman Coding to process multiple

languages that supports Unicode formatting. Huffman

algorithm coding on data compression with variable length

bit coding has been used on files of same size made by 10

different languages, Arabic, Assamese, Bengali, Gujarati,

Hindi, Kannada, Malayalam, Oriya, Tamil and Telugu. Same

things have been made on files of different size from

different languages. A comparison has been made on

compression ratio, time taken for compression and time

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 386
Volume 1, Issue 4, December 2010

taken for decompression for files of same size on different

languages. Finally, one language has been chosen based on

their performance. This type of work has not been made so

far. This is the reason for making this paper.

The paper is divided into following parts. The first part of

this paper has been described the overall data compression.

The Huffman data compression algorithm with example has

been described in next section i.e. article number 3. The

article number 4 has been given the algorithm for use of the

Huffman Data Compression algorithm in different language.

Finally, the results, conclusion and references have been

described in article number 5, 6 and 7.

2. Overview of Data Compression

Data-compression techniques can be divided into two

major families; lossy and lossless.

2.1 Lossy Data Compression Technique

Lossy data compression concedes a certain loss of

accuracy in exchange for greatly increased compression.

Lossy compression proves effective when applied to

graphics images and digitized voice. Most lossy

compression techniques can be adjusted to different

quality levels, gaining higher accuracy in exchange for

less

2.2 Lossless Data Compression

Lossless compression consists of those techniques

guaranteed to generate an exact duplicate of the input

data stream after a compress/expand cycle. This is the

type of compression used when storing database

records, spreadsheets, or word processing files.

2.3 Compression Ratio

Compression Ratio (CR) is defined as,

 (Size of Original Data - Size of Compressed Data)*100

CR =

 Size of Original Data

3. Huffman Algorithm

The Huffman Algorithm for Text Compression is an

improvement over Shannon-Fano algorithm.

3.1 Huffman Algorithm Overview

Although similar in approach, the Huffman algorithm

differs from Shannon-Fano algorithm in the construction

of Binary Tree. The Huffman algorithm generates variable

length code in such way that high frequency symbols are

represented with a minimum number of bits and low

frequency symbols are represented by relatively higher

number of bits. The decoding of Huffman codes is done

by using Huffman decodes Tree. Major difference in

Shannon-Fano and Huffman algorithm, is that in SF

algorithm ,the tree is built on the Top-Down approach

while Huffman Tree is built using the Bottom-Up

approach.

3.2 Construction of Huffman Tree and Generating code

1. Pick up two symbols (a, b) from the last two symbols in

the sorted list of symbols.

2. Create two free nodes of the binary tree and assign A and

B to these nodes.

3. Create a parent node for both nodes and assign it the

frequency equal to the sum of frequencies of the child nodes.

4. Delete these two nodes from the list.

5. Parent node is added to the list of free nodes.

6. Repeat steps 1 to 5 until list of symbols becomes empty.

This will generate the Huffman Tree.

7. Assign the bits similar to Shannon-Fano Tree i.e. left child

is assigned „0‟ and right child is assigned „1‟. Traverse from

the root node of Huffman Tree to the leaf containing a

particular symbol. This traversal will generate a code for that

symbol.

Let us understand Huffman Algorithm with an example.

 Table 1. Frequency table

The Huffman Tree is constructed in the following way and

code is generated.

I. Find the sorted list of symbols in decreasing order of

frequency. The list will be (e, a, b, d).

II. Pick up two Symbols with minimum frequency. These

symbols are „b‟ and„d‟. Assign them two free nodes as

shown figure1.

 „b/d‟ (20)

 b (15) d (5)

Figure 1. First Human Tree

This sub tree is called „b/d‟. Combined frequency of „b/d‟ is

20.

III. Update the sorted list as shown table 2.

Table 2. New Frequency Table

Symbol Frequency

„e‟ 60

„a‟ 20

„b/d‟ 20

Pick up two symbols with the minimum frequency. These

symbols are (‟a‟,‟b/d‟).

Assign them free node as under in figure 2(a) and 2(b).

 „a/b/d‟ (40)

 „a‟(20) „b/d‟ (20)

Symbol Frequency

„e‟ 60

„a‟ 20

„b‟ 15

„d‟ 5

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 387
Volume 1, Issue 4, December 2010

„a/b/d‟ (40)

„a‟(20) „b/d‟ (20)

 „b „(15) „d‟(5)

Figure 2(a) & 2(b): Next Huffman Tree

III. Update sorted list as shown in table 3.

Table 3. Modified frequency table

Symbol Frequency

„e‟ 60

„a/b/d‟ 40

Pick up two symbols with the minimum frequency. These

symbols are (‟e‟,‟a/b/d‟). Assign them free node as under is

shown in figure 3.

 „e/a/b/d‟ (100)

 „e‟(60) „a/b/d‟ (40)

Figure 3. Third Huffman Tree

Finally, Huffman tree has been constructed based previous

tree is shown figure 4. The two new symbols are nothing “b”

and “d”.

 „e/a/b/d‟ (100)

 „e‟(60) „a/b/d‟ (40)

„a‟(20) „b/d‟ (20)

 „b „(15) „d‟(5)

Figure 4. Final Huffman Tree

Update sorted list now it will contain only „e/a/b/d‟ and no

individual symbol is left. Therefore, the process halts and

final Huffman Tree has been constructed. Now, assign the

bit „0‟ and „1‟ to left and right subtree to obtain Huffman

Code is shown in figure 5.

 Root

 0 1

 „e‟(60 0 1

„a‟(20) 0 1

 „b „(15) „d‟(5)

Figure 5. Huffman Tree with assigned code

From the above Huffman tree the code for all symbols are

obtained. These codes are shown below in the following

table 4.

Table 4. Symbol, Frequency, Huffman code and its size

Symbol Frequency Huffman

Code

Size of

Huffman

Code

E 60 0 1

A 20 10 2

B 15 110 3

D 5 111 3

4. Method of selecting the language

This experimental process of selecting the best language has

been done by taking ten standard Indian languages is shown

figure 6. These files are served as input to the compressing

algorithm.

The series of steps that we follow are given below.

Step 1: Initially the Unicode characters are written in

Microsoft Word and then copy pasted in Notepad. The data

is then saved as text file with the encoding option set to

“Unicode” format.

Step 2: Ten files are prepared in the same way by copying

and pasting the characters after being writing them in

Microsoft word. The sizes of the files are increased

gradually from 1Kb (1024 Bytes) to 10 Kb (10240 Bytes).

Step 3: In this way, 100 files are prepared, ten files of

incrementing size for each of the ten languages.

Step 4: The Huffman data compression algorithm generates

compressed files. The algorithm also generates a log file

gives us information about the Original File Size,

Compressed File Size, Time Required to Compression.

Step 5: The compressed files are then decompressed by the

same algorithm. The decompressed file is compared with the

original file to check it losslessness. The decompressed time

also gets stored in the log file generated during compressing.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 388
Volume 1, Issue 4, December 2010

Step 6: A comparative study is made on the compression

rate, Compressing and decompressing time from which the

best language in selected.

The Figure 6 shows the above process diagrammatically.

Figure 6: Diagrammatic Representation of the Language

selection process

5. Experimental Results

For selecting the suitable language, an effort has been

made a comparative study of ten languages already

mentioned on compression ratio, compression time and

decompression time. The selection of language based on

the minimum compression ratio, minimum compression

and decompression time are depicted in table 2,3 and 4.

The results are also furnished in figure 7, 8 and 9.

6. Conclusion and Future Work

The result describes in tables 5, 6 & 7 shown that most of

the times, the compression ratio, compression and

decompression time of Arabic language is comparatively

better than other nine languages. So, from this result, it

can be concluded that Arabic language is suitable for

Huffman data compression algorithms. Same study will be

made in future on other languages in India.

7. References

[1] Blelloch, E., 2002, Introduction to Data Compression.

Computer science Department, Carnegie Mellon University.

[2] Cormark, V. and s. Horspool,, 1987, Data

Compression using Dynamic Huffman Coding and

Modelling Compute. J., 30: 541-550

[3] Vo Ngoc and M. Alistair , 2006, Improved word-

aligned Binary compression for text indexing, IEEE Trans ,

Knowledge & Data Engineering, 18:857-861

 [4] Kaufman, K. and T. Shumuel, 2005, Semi-Lossless

text Compression, Intl. J Foundations of Computer

Science.,16:1167-1178

[5] Capocelli, M., R. Giancarlo and J. Taneja, 1986 Bounds

on the redundancy of Huffman Codes IEEE Transmission

Information Theory, 32:854-857

[6] Gawthrop, J. and W. Liuping, 2005. Data Compression

for Estimation of the Physical parameters of estimation of

the physical parameters of stable and unstable linear

Systems. Automation, 41: 1313-1321

[7] Kesheng, W., J. Otoo and S. Arie, 2006.optimizing

Bitmap Image Compression Techniques with specification

Index.ACM Databases Systems, 31:1-38

[8] D.A Huffman, “A method for the construction of

minimum- redundancy codes,”Proc, . IRE, Vol. 40, pp 1098-

1101, Sept. 1952.

[9] R.G Gallager, “Variations on a theme by Huffman,”

IEEE Trans. Inform Theory ., Vol It-24, pp,668-674, Nov,

1978.

[10] H. Yokoo, “An Improvement of Dynamic Huffman

Coding with a simple repetation finder”, IEEE Trans.,

Commun., Vol 39,pp. 8-10,Jan 1991.

[11] B. Landwehr and P. Marwedel, “A new optimization

Technique for improve ment resurce exploitation and

critical path minization,” in Symposium on System

Synthesis, (Antwerp, Belgium),pp. 65-72,September 1997.

[12] R. Sethi and J. d. Ullman “Using High Performance

with an optimization compiler ” in Proceedings architectures

of high speed Processor pp :185-195,

[13] Sameh Ghwanmeh,Riyad Al-Shalabi “Efficient Data

Compression Scheme using Dynamic Huffman Code

Applied on Arabic Language” Journal of Computer Science

2(12) 885-888,2006 ISSN 1549-3636.

[14] Mark Nelson and Jean Loup Gailly “The Data

Compression Book” 2nd Edition BPB Publisher,Indian

Edition 1996.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 389
Volume 1, Issue 4, December 2010

Table 5: Different file size for different Languages and Compression ratio

Table 6: Different file size for different Languages and Compression Time

Tamil Telugu Assamese Oriya Malayalam Gujarati Bengali Hindi Kannada Arabic

0.059 0.0548 0.0578 0.0592 0.0678 0.0549 0.0549 0.0568 0.0598 0.0568

0.062 0.0447 0.0525 0.0589 0.0598 0.0587 0.0574 0.0589 0.0549 0.0645

0.078 0.0688 0.0714 0.0635 0.0646 0.0574 0.0789 0.0587 0.0587 0.0654

0.082 0.0625 0.0845 0.0789 0.0712 0.0789 0.1345 0.1102 0.0574 0.0742

0.0102 0.0845 0.0845 0.0848 0.0845 0.0846 0.1289 0.0846 0.0789 0.0845

0.0589 0.0915 0.0987 0.0978 0.0973 0.0942 0.1156 0.0942 0.0897 0.0847

0.1648 0.1041 0.1258 0.1096 0.1198 0.1156 0.1345 0.1156 0.1548 0.0987

0.1847 0.1185 0.1389 0.1289 0.1385 0.1274 0.1274 0.1274 0.1045 0.1147

0.2197 0.1385 0.1149 0.1347 0.1398 0.1345 0.1897 0.0587 0.1356 0.1137

0.2198 0.1572 0.1489 0.1597 0.1596 0.1548 0.1945 0.1548 0.1945 0.1398

Table 7: Different file size for different Languages and Decompression Time

Tamil Telugu Assamese Oriya Malayalam Gujarati Bengali Hindi Kannada Arabic

0.042 0.0578 0.0547 0.0589 0.0547 0.0548 0.0548 0.0601 0.0573 0.0587

0.045 0.0741 0.0647 0.0612 0.0593 0.0596 0.0658 0.652 0.0548 0.0789

0.069 0.0712 0.0798 0.0698 0.0679 0.0658 0.0758 0.0649 0.0596 0.0765

0.072 0.0756 0.0971 0.0756 0.0798 0.0858 0.1456 0.0654 0.0658 0.0897

0.081 0.0813 0.0925 0.0849 0.0973 0.0695 0.1045 0.0698 0.078 0.0965

0.0145 0.0105 0.1045 0.0845 0.1047 0.0985 0.1025 0.0985 0.0968 0.0879

0.1458 0.01156 0.1354 0.1145 0.1245 0.1025 0.1456 0.1025 0.1647 0.1012

0.1305 0.1347 0.1478 0.1374 0.1246 0.1256 0.1256 0.1256 0.1156 0.1145

0.15698 0.1498 0.1378 0.1454 0.1496 0.1456 0.1875 0.1596 0.1687 0.1193

0.15674 0.1497 0.1689 0.1647 0.1698 0.1647 0.2014 0.1647 0.2014 0.1354

Tamil Telugu Assamese Oriya Malayalam Gujarati Bengali Hindi Kannada Arabic

65.917969 59.765625 63.671875 63.867188 59.082031 59.179688 64.550781 63.281250 65.234375 65.234375

60.156250 67.578125 65.917969 59.765625 59.130859 62.695312 63.330078 62.353516 65.329675 64.306641

62.076823 59.147135 60.774740 66.210938 63.346354 59.505208 61.100260 59.147135 64.290365 57.584635

63.696289 60.742188 62.353516 63.916016 64.331055 63.916016 64.599609 66.235352 61.718750 59.155273

59.765625 63.691406 66.328125 57.597656 62.968750 62.382812 62.714844 63.691406 58.183594 61.738281

60.791016 66.324870 64.664714 59.163411 61.735026 64.843750 65.543620 59.505208 58.544922 61.100260

65.652902 57.338170 62.039621 67.619978 62.067522 63.909040 57.589286 64.313616 66.629464 62.974330

64.318848 61.437988 65.270996 62.695312 59.509277 68.298340 61.743164 58.789062 62.365723 57.592773

58.279080 62.369792 62.369792 61.436632 67.610677 60.134549 65.332031 64.854601 64.854601 65.277778

61.748047 65.957031 66.630859 64.677734 65.332031 65.546875 56.992188 65.957031 66.923828 60.156250

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 390
Volume 1, Issue 4, December 2010

Figure 7. Graph for Different File sized for Different Languages and Compression Ratio

Different file Size for Different

Language and Compression Time

0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10

File Sized in KB

T
im

e
in

 m
s

Tamil

Telugu

Assamese

Oriya

Malayalam

Gujarati

Bengali

Hindi

Kannada

Arabic

Figure 8: Graph for Different File sized for Different Languages and Compression Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

Tamil

Telugu

Assamese

Oriya

Malayalam

Gujarati

Bengali

Hindi

Kannada

Arabic

Figure 9: Graph for Different File sized for Different Languages and Decompression Time

